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Abstract

In this paper we present a preliminary report on our work on the tracking
of internal layers in a singularly-perturbed convection-diffusion equation. We
shcw why such tracking may be desirable, and we also show how to do it using
domain decomposition based on asymptotic analysis.



1. Introduction.

In this paper we present the analogue of a shock-tracking scheme for the resolutior of
an int~rnal layer and its interaction with an ordinary boundary layer at the outflow.
In the computation of compressible flows at high Mach number there has loag been
competition between shock tracking and slock capturing, and it is now generally
agreed that both are needed. We generally find that the number of strong shocks is
small, and they should be tracked in order to assure accuracy of the solution. For
rcasons of efficiency, however, the large number of weak shocks reverberating around
the domain should be computed by a reliable shock-capturing scheme such as Roe’s
method [14] or the method of Coleila and Woodward [7]. Shocks are not always the
most important features in fluid flows, but the tracking of such other phenomena is
still far behind shock tracking. We first show why it may be desirable to track an
internal layer, and then we show how such tracking may be accomplished via doinain
decomposition.

For the sake of simplicity we consider a specific time-independem, singularly-
perturbed, convection-diffusion equation

adru+bidyu=cAu+ F (1.1)

on a bounded domain € in the (z,y)-plane. Here, A denotes the Laplace operator,
and ¢ is a small, positive number. For tie moment, we impose Dirichlet conditions
u = f on the boundary 9, but later we sometimes treat mixed boundary conditions.
The function f is required to be piccewise smooth, (We use the term ‘smooth’ to mean
some convenient degree of differentiability, say ('2.) We assume that the coellicients
a and b are smooth functions of & and y on {2, The source term F is assumed to be a
smooth lunction of z, y, and «. Furthermore, we impose the restriction that Jaf 4 |b] #
0 in the closure of 2. This assumption implies that there are no stagnation points, and
it greatly diminishes the complexity of the domain decomposition. Onr assumption
of semilivearity is much less restrictive because nonlinear problems are often solved
via a sequence of linear problems with variable coellicients. OQur discussion daes not
pertain to shock layers, however, since they violate the assumption of smoothness of
a and b.

Provious work, [4], [11], [12] on algorithms for (1.1) using domain decomposition
hased on asymptotic analysis has treated the special case of b = 0. It is true that
a transformation of coordinates may be used to convert (1.1) to che case b . 0. In
this paper we show why such a transformation is very desirable, and we present an
algorithm to carey it out.

he development of numerical methods for (1.1 in the sinpularly perturbed case
requires an apderstanding of the asymptotic hehavior of its solutions as « | 0, We
thesefore begin with o brief deseription of the relationship hetween wand the solution



-3 -
[’ of the reduced equatjon
adU+b0,U = F. (1.2)

For more details see the books by Chang and Howes [1] and Eckhaus (8). Equa-
tion (1.2) is easily solved by the method of characteristics,

dz dy dUv
-‘Ts-—a, E-— . d—s—F. (1.9)

The first two equations (1.3) define characteristic curves. It is clear that we cannot
impose the boundary condition U/ = f at every intersection ol a characteristic curve
with 0Q. Instead, we subdivide J9 into three sets, depending on the direction of
the vector (a,b). The inflow boundary Iy is the subset of &6 on which (a,b) points
into , the outflow boundary g is the subset of 99 on whichk (a,b) points out of 2,
and the tangential boundary Tt is the subset of 02 on which (a,b) is tangent to J9Q.
For (1.3) the boundary condition " = f is ilnposed only on the inflow boundary I';.

It is reasonabic to expect to have u = [’ for the solutions u of (1.1) wherever
Au is not too ierge, i.e, wherever u is smooth. Because of the smoothness of the
source term F and of the coefficients a and b, the only mechanism for introducing
nonsmooth behavior into the solution w of (1.1) is through the boundary condition u =
f. One obvious difficulty is that we cannot force I/ = f on the outflow and tangential
boundaries ['o UI'r. The resolution of this difficulty is that there are boundary layers
across which u changes rapidly from u = I/ to u = f. More precisely, when f is
smooth the relation u = U is true except in the following portions of €. There may
be what are called paranolic boundary layers along the tangential boundary 'y, and
there may be ordinary boundaty layers along the ovtilow boundary I'p.

Let us take a moment to explain the terminology ‘ordinary boundary layer’ and
10 describe its properties. Consider a point 12 on ', In the vieinity of ' we may
construct a transformation (a,7) — (r,y) such that the origin (a,7) = (0,0) is
mapped to the point 2. We may further require that the portion of a neighborhood
of the origin with ¢ > 0 is mapped into €2, so that a segment of the axis a = 0 is
mapped onto a segment of the bov dary . In terms of the variables a and r the
differential equation (1.1" takes the form

ddgu + Fu’), u=t(r ('),'fu +oegidgiou g ey Uflt) + I (1.1)

Note that the definition of outflow boundary implies that i ¢ is chasen to he positive,
then it follows that a < 0. We have seen that we expect to have v = 7 away from
the boundary @ = 0, while we require that w = f on the boundary ¢ = (. That is,
woe expect o to vary slowly with respeet to r but rapidly with respect to o, Lot us
therelore introduce the sealing

o, r ! (rnm
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into (1.4). If we formally discard all but terms of the order of 1/¢, we obtain a reduced
equation
ao;V = ¢, O%V. (1.6)

The term ordinary boundary layer derives from the fact that (1.6) is an ordin-rv
differential equation. The term exponential boundary layer is also used, becar. -
sotution V of (1.6) is the sum of a constant and an exponential function. N. R
becouse @/c; < 0, this exponential decreases with increasing . Note also inat in
terms of the variable o the rate of decrease is of the order of exp {—x0o/¢}, where x is
an average value of |2|/c;. \We therefore expect the width of the ordinarv boundary
layer to be O(¢). The book by Chang and Howes [1] gives theoretical justification for
all of these heuristic manipulations.

In the vicinity of the tangential boundary '+ we use the characteristic curves ( 1.3)
to define one set of coordinate lines, and we use them as the foundation for a local

mapping (s,t) — (z,y) in the vicinity of a point /> on I'7. In terms of these coordi-
nates (1.1) takes the form

U,u=t(qt')fu+('5('),(')¢u+('.;(')fu)+ F. (.7

We remnark that the definition of flow direction implies that ¢g > 0. We may require
that a segment of the axis ¢ = 0 maps onto a segment of the boundary I't and that
positive values of ¢ correspond to points in the interior of Q. Thus, the boundary
layer has te accommodate a rapid transition from v =/ fort > 0tou= fatt = 0.
Let us therefore introduce the scaling

s =3, t=i/F (1.8)

into (1.7). If we formally delete all terms smaller than O(1), we obtain the reduced
oquation

KW = e RW 4 1 (1.9)

This equation is parabolic, giving rise to the term parabolic boundary layer. Fur-
thermore, the thickness of the boundary layer for (1.9) is Q1) with respect 3
With respect to ¢ the parabolic boundary layer is therelore of width O(/0). Aga,
theoretical justification for these remarks may be found in [1].

If f has a discontinuity at a point P on 7, then by (1.3) the finction {7 will
have a corresponding discontinuity in 2 along the characteristic curve 3 through 1’
similarly, if the Lie derivative of f along 'y is discontinnons at £, then grad U is
discontinuous along y. Because w is smooth, the lack of smoothness of U causes u to
deviate substantiadly from {7 in o neighborhood of 3. As in the case of a parabalic
boundary layer, if we introduce coordinates (s, 0) derived from the charactoristic vari
able s as given by (1.3), we find that (1.1) tmaps 1o an equation of the form (1.7} and
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that (1.9) is the appropriate reduced equation. We are therefore led to the conclusion
that such an internal layer is parabolic in nature and that its width is O(\/c). We
again refer the reader to [1] for further justification.

In the next section we analyze the behavior of astandard central difference schr~
when there is an internal layer tilted at an angle to the grid, and we show tl.
numerical approximation introduces downstream oscillations unless the internal layver
is resolved. Therefore. we must use either a fine grid, an artificial increase or ilie
viscosity €, or a grid aligned with the layer. Here we are discussing a grid effect, in
that Hedstrom and Osterheld [13] showed that the numerical errors for a coarse grid
aligned with an internal layer are minims#! even at large cell Reynolds numbers.

In Section 3 we present an algorithim for the construc‘ion of an orthogonal grid
with one coordinate direction aligned to the vector field (a,b). This mapping requ
the sclution of the telegraphers’ equation. In Section 4 we introduce a domain ¢ .-
position for a probiem (1.1) with an internal layer a1 an ordinary boundary layer. In
this domain decomposition the ordinary boundary layer ana “ie internal layer have
their own subdomains, and there is a separate subdomain for the region where these
layers interact. In addition, in each subdomain a separate numerical method is used,
depending on the local asymptotic behavior of the solution.



2. A layer tilted to the grid.

In this section we use a heuristic argument based on thc modified equation to show
why it is generally unwise to permit an internal layer not to be aligned with the
grid. Specifically, we show that the standard central-diflerence scheme has grid

which are modelled by a modified equation in the style of Warming and Hye:"

See Griffiths and Sanz-Serna [10] for a more modern exposition on modified equa... ...
We shall see that the solutions of the miodified equation are integrals of Airy {unctions,
muliiplied by a decaying exponentiul. The oscillations of this Airy function may or
may not be damped by the exponential, depending on the values of a dimensionless
parameter. We also derive the modified equatio. for the upwind difference scheme,
and as may be expected, we find that upwinding adds numerical diffusion.

For the discussion here v.e restrict our attention to the special case when the
coefficients a and b in (1.1) are constant and the source term F vanishes. Then
for conveciion with velocity V" in the direction (cos #.sin ) we have the convection-
diffusion equation

Vcosfdru+ Vsinddyu = cAu.

The reduced equation for (2.1) is

Veos@d,U ~VsinddU =0, (2.2)
and its charactcristic curves are given by

d.

= Vcos@, ﬂ = Vsiné. 12.3)

ds ds

For the discussion here it suffices to restrict our attention to directions ) < 6 < r /4.
We remark that the special case § = 0 of fluw parallel to the grid was examined by
lHedstrom and Osterheld [13].

Fer (2.1) we use a rectangular domain

= {(z,y)0<r<1,0<y<l} (2.1)
Thus, under the condition« that 0 < 8 < 7/ the inflow boundary is at + = 0 and at
y = 0, and the other two sides of the rectangle comprise the outflow houndary. ( o
inflow boundary we select a point of discontinuity yg, and we impose the conditions
W= {0.5([ + sgnly -- y‘,)) fore =10, (2.5)

0 fory = 0.

‘The Jiscontinuity in the boundary data at gy induces an internal layer along the
characteristic curve rsind — (y — yo)cos @ = 0. lu fact, the solution 7 to the reduced
equation (2.2) with boundary data (2.5) is given by

1
e ‘—Jsgu(.r sinf - (y - ]/u)('usd). (2.0)

to | o—
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In order to minimize ordinary boundary layers along the outflow boundary, we impose
the reduced equation (2.2) as boundary condition at ¢ = 1 and at y = 1.

Consider the standard central-difference schemc lor (2.1). We impose a square
grid on Q) with mesh size h, and we define the shift operators

T:v(z,y) = v(z + h,y), Tyv(z,y) = v(z,y+ h). (2.7)

With this notation the central-difference approximation to (2.1) is

V cos @ -1 V siné -1y )
Iz ~ T2 o+ ——(Ty = T, )v = ¢ Dv, (2.8)

where D denotes the discrete Laplacian
1 Y — r -
D= E(T,+T,+’1,‘+l‘y Ly o%

On the inflow boundary I'; the boundary conditions for (2.8) are (2.5). On the outflow
boundary I'gp we use an upwind discretization of (2.2).

The modified equation for (2.8) is best written in terms of the rotated coordinate
system aligned with the flow direction

s=zcosf+ (y- yo)siné, 29
t = —zsint + (y — yo) cos . (2.9)
We aiso introduce scalings of s and ¢ in order to derive 1 modified equation in di-
mensionless form and to identify the pertinent parameters. It happens that for (2.1)
or (2.8) on the halfplane z > 0 there is no natural length scale in the direction of the
flow (the s-direction). One may as well use a length scale L = 1. For the rectangular
domaiu §2 defined in (2.1) it 15 reasonable to take L to be the width of Q (L = 1) or
the width of 0 in the s-direction (I = sec ). We shall sce that the natural scalings
for the modified equation corresponding to the central difference method (2.8) are

3= 14(1‘
L\ '/? (2.10)
t=r1 (V) .

Furthermore, the important dimensionless paranaters for (2.8) are the coll Reynolds
number

XY
Ifh=l—‘/- (2.11)

[

and the degree of streamwise resolution
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In terms of these parameters the modified equation for (2.8) is given by the following
theorem.

Theorem. Suppose chat U < 6 < 7/4. Suppose also that vy < 1 and that
v € R, € 1/v. Then the modified equation for (2.8) is

Byv = 8 ~ %‘ﬂ»ﬂlzniﬂ v+ (th + 14—121‘-(3 + cos(40))) v,  (2.13)
Remarks. The restriction that ¥ = A/L <€ 1 is reasonable for numerical com-
putations, since we would want features in the streamwise direction to be resolved.
The condition tnat ¥ € R, <€ 1/7v is also ordinarily satisfied in computations. We
have written the modified equation in the form (2.13) in order to provide uniformity
as sin(46) — 0. The grid-induced oscillations appear only when sin(48) # 0 and when
Ry is moderately large. (Remember that we require R,y € 1.) Under the condition
that Rjsin(48) is bounded away from zero, the modified equation (2.13) takes the
simpler form

0pv = D7 - ﬂmﬂq‘/zni‘,"‘ Rv. (2.14)
In (2.14) the parameter
sin 40 2
g = —2‘—4—)7'/'-’112’ (2.15)

mcasures the importance of the grid-induced numerical dispersion relative to the
physical diffusion, and no numerically induced oscillations will be observed if § is
sufficiently small. For boundary data v = sgn(r) a' * = 0 the solution of (2.14) may
be expressed in terms of the Airy function, as is shown by Chin and Hedstrom [3]. In
fact, a Fourier transformation with respect to 7 shew.  hat

vo,7) = 1, /w l exp {idaw3 -owl+ irw} dw (2.16)
' 2 Jomo 127w ) )

The reference [3] also provides figures and tables of the integrals (2.16} for various

values of J. The upshot is that whether or not there are oscillations depends on a
parameter ,
941/3

= (208)3/3° (2.17)

If @ > 2, the diffusion is dominant, and there are no oscillations. For a < 2, however,

there is a sequence of damped oscillations below the layer (7 < ). Because a is

an increasing function of ¢, as we proceed downwind @ increases and the diffusion

eventually removes the oscillations.

Note with regard to the applicability of the modified equation that the internal

laver is many grid cells wide and that the oscillations have wavelengths spanning

many grid cells. This behavior makes the modified equation applicable, in that the
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derivation of a modified equation is based on the assumption that the numerical
solution is smooth relative to the grid. The user of modified equations must always
keep in mind that they are utterly useless in predicting variations in the numerical
solution on the scale of 2 or 3 grid sizes.

Finally, we also remark that the upwind difference scheme

cos # sin @
h h

with the scalings (2.10) has the modified equation

V—(I-TYu+V

(I-T;"u=eDu

Jsv = (’)31' + a; ('):v

with R
a =1+ -2——\/"§sin(20)cos (; - 0) ,

_ X YR 24( caed i3
ay = R + r (3+cos(40)+21(a.os 8 + sin 0)).

The most significant numerical viscosity addcd by the grid effect is the deviatic= »f
ag from 1.

Proof of the theorem. The idea of the modified equation is to make an ansatz
that the solution of the difference scheme is smooth enough to be represented by a
small number of terms of its Taylor expansion and to use this expansion to identify a
partial differential equation which approximates (2.8) more closely than the original
equation (2.1) does.

Thus, we begin with the assumption that some smooth function v is a solution
of (2.8). In this case the word ‘smooth’ is taken to mean that we may use Taylor
approximations such as

T ‘ hz,z h:!" h“ o
T:v = v+h.r),u+72-¢),v+-6—div+ﬁdzv (2.18)

for the terms in (2.8). That .s, we choose to neglect terms in the Taylor series
approximation to (2.8) of order i:* and higher. We therefore obtain the equatiou

h? . h? .
V cos @ ((‘),,-v + T Ogv) + Vsiné ((’)yv + % (')i,’v)
12 02 h? . 4 Y
=c|dv+ v+ -1—2-(()_,0 +9d,v)].
The rctation of coordinates (2.9) then gives
2 ol

Vh . " 2
Voo + __h— Il:;[!i] = 4(('),1U + div)+ l_;.l“'["} (2.19)
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with
Lav]) = 31-(3 + cos(4o)) 8v - % sin(49) 039,v + %sin2(20) 0,07 v + %sin(cw) v,
Lyv] = %(3 + cos(4o))(a:v 1 0}v) — sin(48)(830 v ~ 9,83 v) + 35in*(20)9?9}v.

Because we are interested in the effects of the internal layer, we expect deriv:
of v in the t-direction (perpendicular to the layer) to be significantly larger tnan
derivatives in the s-direction. The scalings (2.10) are selected io balance the terms
dsv and 8?v in (2.19). Thus, upon substituting (2.10) into (2.19) and dropping terms
smaller than O(7R,), we obtain

— A2y _ T a2 lﬁ 4
Oyv = 07v Bva+Rh0,,v+ 78 (3+cos(40))3,v (=

with 3 as defined by (2.15).

The inexperienced user of modified equations may expect (2.20) to serve as a
modified equation [or (2.8). We cannot use it because the term involving d}v ren-
ders (2.20) unstable to high-frequency perturbations. The use of such a modified
equation would predict numerical instabilitinrs where there are none, and it is
stance of a modified equation not conforming to the difference scheme for phen: "
of short wave length. The term d*v appears in (2.20) because we stopped the Taylor
expansion (2.18) at d3v, and we went that far because the coelficient 8 of J2vin (2.20)
is zero when sir.(48) = 0. That is, we must replace Jv by something reasonable but
harmless when [ is near zero, and for other values of 3 it need only be something
harmless. Because d,v = 0?v when § = 0, the substitution we make to render v
harmless is that v =~ d%v. In this way a high-frequency instability is converted i:to
an increase of dissipation in the streamwise direction, and it produces our moditied
equatijon (2.13). (This trick was also used in (13} in the special case 8 = ().)

Remarks to mathematicians. The above argument contains some sleight of
aand. [n particular, the domain {2 was replaced by the halfspace s > 0 or, equivalently,
o > 0. This change removes any ordinary boundary layer which may be present at
the outflow. In addition, boundary data for (2.13) are to be applied at the rotated
boundary s = 0. We expect these distortions to introduce discrepancies only nea. .::e
point of discontinuity (z,y) = (0,yg). In particular, it appears from our computations
that there needs to be aslight shift of coordinates. See the comments concerning Fig. 1
Yelow. We have also not shown that the solution of the tiodified equation (2.13) bears
any resemblance to the solution of the difference scheme (2.8). Such a proof would
probably proceed as in [13] with the replacement of 2 by the halfspace £ > 0, followed
by a i‘ourier transformation of (2.8) in the y-direction. T'he modified equation (2.13)
shows that the cauonical form of the integral representation of v is

I > f(w)

v(o, 1) = -2- + | oo

oxp {iu;.w" - aw? ¥ iulu} lw (2.21)
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with f and the a; dependent on ¢ and 7. Furthermore, the integral (2.16) indicates
that f = 1,a3 = #0,a; =~ 0,and a; = 7 when ¢ » 1 and |7| « 1. The integral (2.16)
derived from the modified equation (2.14) is merety a nonuniform asymptotic approx-
imation which is valid when |r| € 1, ¢ » 1, and when 3 is bounded away from zero.
We see from the form of (2.21) that a uniform asymptotic esti: 'te would require
investigation of the interaction of two saddle points and a pole. For the case when
sin(40) = 0 the situation is simpler because a3 = 0 and there is only one saddle
point and a pole. Uniform asymptotics for # = 0 are presented in Hedstrom and
Osterheld [13).

A computaticnal example. In our computations to illustrate these oscillations
we located the point of discontinuity at yo = 0.25, we chose coefficients

Vcosd =2, Vsiné =1, € = 0.002,

and we used a mesh size of A = 0.02. This gives a cell Reynolds number of moderate
size Ry = 10V/5, and with L = 1 it gives ¥y = 0.02. The scaling (2.10) is therefore
\/WV =~ 0.0946, and the value of 4 in (2.15) is 3 = 0.598. The cross section at
z = 0.8 is shown in Fig. 1, where the solution to (2.8) is shown as a solid curve
and the Airy integral (2.16) is given as dashes. We must admit that in order to
obtain such a good match of the curves, we had to shift the jump for the Airy
integral from yo to yo + A. This could be because the Airy integral applies to the
rotated coordinate system (s,t) given by (2.9). It should also be noted that there is
a phase difference between the two curves in the oscillatory region. This is a well-
known deficiency of modified equations, and it results from the nonuniformity of the
asymptotic approximation. At the point (z,y) = (0.8,0.6) ncar the overshoot the
value the parameter a given by (2.17) is a = 1.291. We have oscillations because
a < 2.

The numerical mcthod we used to solve (2.8) is a combination of ideas from
Elman and Golub (9] and from Chin and Manteuffel [6]. As in Elman and Golub,
we introduce a red-black ordering on the grid points and do a cyclic reduction to
ohtain a nine-point scheme on the black grid points. This reduction produces a
matrix much better conditioned for iterative methods. The itcrative method used by
Elman and Golub is point Jacobi, most!y because they impose no constraints on the
direction of flow. In our example the flow is one-directional, so we follow Chin and
Manteuffel in using line Gauss-Seide! with lines transversal to the flow, starting at the
inflow boundary and marching downstream. We find that this scheme converges very
rapidly, with the greatest speeds at high cell Reynolds numbers. (Perhaps, we should
reiterate that the point of this section is to show that rapid solution of the matrix
equation should not be the primary objective-- its solution is a poor approximation
to the solution of the differential equation when the parameter 4 in (2.15) is large.)

Let us remark that we have also solved (2.8) in a version with a discrote approx-
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Fig. 1. Airy oscillotions.

imation to Neum:ann outflow boundary conditions

deu=0 forz =1,

(2.22)
hu=0 fory=1.

We found this boundary condition to be satisfactory only ior small cell Reynolds
number, R,y < 5. Otherwise, there are additional small oscillat’ons with period 2h
induced by the mismatch at the outflow boundary £ = 1.
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3. Curvilinear coordinates.

In this section we permit the coefficients ¢ and b in (..1) to depend on the position
(z,y), and we present a numerical algorithm for generating an orthogonal coordinate
system (a chart) aligned with the given vector field (a,b). Our coordinate system is
derived frem the characteristic curves. We remark that a somewhat different coordi-
nate transformation based on characteristics was given by Chia et al. [5].

We again assume that the vector field (a,b) has no stagnation point, so that
la] + |b] is bounded away from zero for all (z,y) in §2. For purposes of constructing
the mapping, it is convenient to do an initial scaling so that a? + > = 1. One of our
goals is to set up a mapping (s,t) — (z,y) such that s follows the flow in the sense
that ihere exists a positive function ¢ for which

8, = o(ad; +b9,). (3.1)

Necause the vector (—b,a) is orthogonal to (a,b), the orthogonality requirement (our
second goal) amounts to the condition

O =v(-bid; +ady) (3.2)

for some positive function v. In a moment we show that the scale factors ¢ and ¢
are not arbitrary.

In part, the construction of such a mapping is easy, because it is casy to inte-

grate (3.1). All that is nceded is to pick a convenient starting point (zg,yp) and to
integrate the system

d—:=a¢. rF=uryats =1,
i (3.3)
E=b¢. y=1 ats =10,

‘This gives a curvilinear coordinate tine in Q corresponding to a constant value of t,
The image of a line s = const. may be obtained similarly by integrating

)

1_{ = =by, I =rgatt =0,

g; (3.4)
— = qy, y:yuillt"-:().

dt

We still must ensure global consistency as follows, Let us traverse the edges of
the curvilinear rectangle sy < & < 3.8y < t < {y, and we assume that this rectangle
is contained in §2. Denote the image of {sg.8y) as the vertex 4. Suppose further hat
we integrate (3.3) from sy to ap, arriving at the vertex ¢'0 We then integrate (3.4)
from ty to fy and arrive at the vertex 2 opposite A, Let us now reverse the order by
first integrating (3.4) from f to ) to arrive at the vertex 1) and then integrate (:3.3)



- 14 -

from sg to 91. Can we be certain that we again arrive at the vertex B? It happens that
this global consistency question has been answered [15], and that what is required is
the vanishing of the Lie bracket [3,,8;] = 0,0; — 8,0,.

It is easy to see by a chort computation that the vanishing of the Lie bracket
[04,0:] is equivalent to the system of partial differential equations

Os(ay) = Di(b),

B,(bv) = —di(ad). -0)

Upon differentiating the product-~ in (3.5) and solving for 0,9 and d,¢, we find that
a necessary and sufficient condition for consistency is that

(a? +6%)0,¥ = ¢p{adib - bda) ~ Y(ad,a + bI,b),
(e +0*)0,0 = —0(adia + bOb) + v(bya — a d,b).

Note that if (a,b) has been scaled so that ¢? + 0* = 1, then (3.6) takes the simpler
form.

ded = y(bdya — adyb). (3-7)

We recognize the system (3.7) as the telegraphers’ equation, written in terms of
Lie derivatives along the characteristic curves. Therefore, all that is needed for its
solution is to prescribe values ¢ = 1 at t = 0 and ¥ = 1 at s = 0 and to march in the
s and f-directions concurrently.

It should be emphasized that theoretical questions remain for this grid-gencration
scheme. In particular, there is no guarantee that the solutions ¢ and ¥ will be po-itive
at all points in (2. This is important in that the Jacobian of the transformation (3.3
1) is given by J = (a* + b*)@¢. We required at the outset that ¢? 4 4% be bounded
away from zero. Thus, if we are to maintain a nonzero Jacobian, we must take special
measures whenever it happens that ¢ < 0 or ¥ < 0. One possibility is to back up
and put a boundary on this local chart. We could then initialize a new chart and
continue.
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4. Domain decomposition for an internal layer.

In this section we present a computational example which uses domain decomposition
to resolve an internal layer. At this point we have not yet implemented the algorithm
described here, but the final report will have computations. In our algorithin we first
identify the internal and boundary layers, and we then set up a domain decomp
to segregate them. The domain decomposition is carried out with overlappin
using the tools of Chesshire and Henshaw [2]. We have added the modification tial
in some subdomains we use the grid-generation algorithm of Section 3.

As our domain § we use the square 0 <z < 1,9 < y < 1, and on Q we consider
the convection-diffusion equation

(1+z)d:u+(1-y)iu=cAu.

As boundary conditions for (4.1) we prescribe u = 0 on the bottom of
u = 1 on the left-hand edge (z = 0), u = l on the top (y = 1), and u = e
right-hard edge (z = 1).

Note that in (4.1) ve have chosen coefficients so that there is no turning point
in Q. That is, we have |1 + £| 4+ |1 — y| bounded away from zero in 2. Note also that
by the discussion in Section 1 the inflow boundary I'; consists of the bottom y = 0
and the left-hand side z = 0 of the square 2. Furthermore, the top of the square
y = |l is a tangential boundary ['r, and the right-hand edge z = 1 is an outflow I'g.
The reduced equation is

(L+2)0:U + (1 - )1 =0, (4.2)

and its boundary conditions are imposed on the inflow boundary I';. i =
pens that we can write down a formula for the solution ¢/ of (4.2), althot
is not necessary for our domain-decomposition algorithm. The characteristic . .. vos
for (:1.2) are the hyperbolas (£ = 1)(y + 1) = const. Thus, the solution of the reducod
cquation (-1.2) is
[ = 1 ify>a/(r+ 1)
T\ ity <r/z ),
This gives us an internal layer along the hyperbola y = /(£ + 1) and expoventiad
boundary layers at the outflow boundary ¢ = 1. [t happens that we imposed boundary
data along the tangential boundary I'r such that no boundary layer resides there.
If there had been a boundary layer along 'y, we could Lave madified the domain
decompaosition described Lelow so as to include its eflects,
As the problem is stated, we need the following subdomains: (1) & square 15 of
diameter O(c) at the origin to cover the birth of the internal layer, (2) aninternad .
region

o {(eyly o/ d 1) - Vi)
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with O(¢) < ¢ < 1 = O(e), (3) thrie outfiow boundary layers O, onc above the
internal layer, one below it, and one interacting with it, (1) an outer region H above
the internal layer on which u = 1, and (5) an outer region ‘H below the internal layer
on which u = 0.

In the two outer regions H we use a coordinate system derived from the charac®.r-
istics, as described in Section 3. In the internal layer I we use a parabolic coor
system imposed on the characteristics. (More pre- otails will be given in th A
report.) Finally, in the birth B and boundary- gions O we use the methods
given in the papers by Hedstrom and Howes [11] and [12]. The iterations are per-
formed in the order: (1) the outer regions H, (2) the birth region B, (3) the internal
layer I, (4) the outflow boundary layers ). The iterative schemes in the subd
are as in {10] and [12).
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